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Abstract. We study the convergence of q-learning and related algorithms introduced by Jia and
Zhou (J. Mach. Learn. Res., 24 (2023), 161) for controlled diffusion processes. Under suitable

conditions on the growth and regularity of the model parameters, we provide a quantitative error and

regret analysis of both the exploratory policy improvement algorithm and the q-learning algorithm.
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1. Introduction

Reinforcement learning (RL) is an active subarea in machine learning, which has successfully been
applied to solve complex decision-making problems such as playing board games [31, 32] and video
games [22], driving autonomously [18, 21], and more recently, aligning large language models and text-
to-image generative models with human preference [3, 7, 24]. RL research has predominantly focused
on Markov decision processes (MDPs) in discrete time and space; see [34] for a detailed account of
theory and applications for MDPs.

Wang, Zariphopoulou, and Zhou [40] are the first to formulate and develop an entropy-regularized,
exploratory control framework for RL with controlled diffusion processes, which is inherently in con-
tinuous time with continuous state spaces and possibly continuous action (control) spaces. In this
framework, stochastic relaxed control is utilized to represent exploration, capturing the notion of
“trial and error” that is the core to RL. Subsequent work aims at laying theoretical foundation for
model-free RL in continuous-time by a martingale approach [14, 15, 16], and by policy optimization
[44]. Here, by “model-free” we mean that the underlying dynamics are diffusion processes but their
coefficients along with the reward functions are unknown. The key insight of [14, 15, 16] is that one
can derive learning objectives from the martingale structure underpinning the continuous-time RL.
The theoretical results in those papers naturally lead to various “model-free” algorithms for general
RL tasks, in the sense that they learn optimal policies directly without attempting to learn/estimate
the model parameters. Many of these algorithms recover existing RL algorithms for MDPs that were
often proposed in a heuristic manner. However, convergence and regret analysis of the algorithms,
which has occupied a central stage in the RL study for MDPs, is still lacking for the diffusion coun-
terpart. To our best knowledge, the only works that carry out a model-free convergence analysis
and derive sublinear regrets are [12] for a class of stochastic linear–quadratic (LQ) control problems
and [11] for continuous-time mean–variance portfolio selection, both of which apply/apapt the policy
gradient algorithms developed in [15] and exploit heavily the special structures of the problems.

The purpose of the paper is to fill this gap by providing quantitative analysis of (little) q-learning
introduced in [16] and related algorithms for generally nonlinear RL problems. While (big) Q-learning
is a key method for discrete-time MDP RL, the Q-function collapses in continuous time as it no
longer depends on actions when the time step is infinitesimally small. [16] proposes the notion of the
q-function, which is the first-order derivative of the Q-function with respect to time discretization.
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The q-function is entirely a continuous-time notion, which is closely related to the (generalized)
Hamiltonian. The significance of this function lies in several aspects: 1) it is the function that needs to
be learned in order to learn the optimal policies, rather than the individual functions appearing in the
model; 2) it is the Gibbs exponent that can be used to improve the current policy; and 3) it is learnable
(through an argument using Itô’s formula) by observable/coumputable data including the temporal
differences and the reward signals. This leads to q-learning, which alternates between stochastic
approximation (to learn the value functions and the q-functions) and policy iteration/improvement
(to update and improve the policies). The general q-learning theory and algorithms have already been
applied to various specific problems, including in particular diffusion models for generative AI [9, 43].

The q-learning has two components:

Learning values and policies + Policy iteration (PI),

where “values” include those of the value functions and q-functions and “policies” are encoded by
the q-functions. In the classical control setting, PI (or Howard’s algorithm [1, 10]) improves the
policies gradually in order to approximate the optimal one. So it is also called policy improvement;
see [17, 16, 35] for recent studies. In the RL setting, an entropy regularizer is added to encourage
exploration, which gives rise to the exploratory control problem [36]. When the model parameters are
known (and the value function can be accessed), one can simply use a version of PI for the exploratory
control problem. We call it exploratory policy improvement, which can be viewed as a model-based
RL approach; see [19, 30, 38] for recent development. The model-free RL approach, on the other
hand, consists of learning directly the value function and the optimal policy, without estimating the
model parameters.

Our contribution is to provide a quantitative convergence analysis for both the model-based ex-
ploratory policy improvement and the model-free q-learning, while the former serves as a technical
prerequisite for the latter. Specially, we prove:

• the exponential convergence of exploratory policy improvement (Theorem 3.2);

• an explicit error bound of q-learning, depending on the regularity of the model parameters
and the learning rate (Theorems 4.7 and 4.8).

As an intermediate step to study the q-learning algorithm, we introduce semi-q-learning in which the
value functions and the reward functions are assumed to be known, so we only need to learn the q-
functions. We establish a bound on the value approximation in terms of the q-function approximation
(Theorem 4.2), which is crucial for the convergence analysis of (semi-)q-learning.

Our proofs rely on both probabilistic and analytical arguments, including backward stochastic differ-
ential equations (BSDEs), partial differential equations (PDEs), perturbation analysis, and stochastic
approximation. We hope that this work will trigger and motivate further research in continuous-time
RL, and especially in its emerging application to diffusion model alignment [9, 43] and [37, Section
7.3].

The remainder of the paper is organized as follows. In Section 2, we provide background on the
exploratory control problem and q-learning. In Section 3, we study exploratory policy improvement,
and the q-learning algorithm is considered in Section 4. We conclude with Section 5.

2. Background

In this section, we provide background on continuous-time RL, and in particular q-learning, for
controlled diffusion processes. We first introduce notations that will be used throughout.

• R is the set of real numbers. For x, y ∈ R, x ∧ y (resp. x ∨ y) is the smaller (resp. larger)
number of x and y.

• For a vector x, |x| is the Euclidean norm of x; for A ⊂ Rd, |A| is the volume of A.
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• For a matrix A, AT is the transpose of A, Tr(A) is the trace of A, and |A| is the spectral
norm of A.

• For a function f on X, |f |∞ := supX |f(x)| denotes its sup-norm, and |f |L1(X) :=
∫
X
|f(x)|dx

is the L1-norm of f .

• For f : [0,∞) × Rd 3 (t, x) → R, ∂tf is its (partial) derivative in t, and ∇f =
(
∂f
∂xi

)
i

and

∇2f =
(

∂f
∂xi∂xj

)
i,j

are its gradient and Hessian in x respectively.

• For two probability density functions p(·) and q(·), dTV (p(·), q(·)) := supA |
∫
A
p(a)da −∫

A
q(a)da| is the total variation distance between p(·) and q(·).

• For a σ-field F , L2(F) is the set of F-measurable square-integrable random variables.

• For any θ ∈ R and 0 ≤ t ≤ T , Hθt := {predictable processes (xs, t ≤ s ≤ T ) satisfying E
∫ T
t
eθs|xs|2ds <

∞} with the Hθt -norm |x|Hθt := (E
∫ T
t
eθs|xs|2ds)

1
2 .

• a = O(b) or a . b means that a/b is bounded as some problem parameter tends to 0 or ∞.

• We use C for a generic constant whose values may change from line to line.

2.1. Classical control problem. Let (Ω,F ,P, {Ft}t≥0) be a filtered probability space on which we
define a d′-dimensional Ft-adapted Brownian motion (Wt, t ≥ 0). Let A be a generic action space,
and u = (ut, 0 ≤ t ≤ T ) be a control which is an adapted process taking values in A.

The stochastic control problem is to control the state variable Xt ∈ Rd, whose dynamic is governed
by the (controlled) stochastic differential equation (SDE):

dXu
t = b(t,Xu

t , ut)dt+ σ(t,Xu
t , ut)dWt, (2.1)

where b : R+ × Rd ×A → Rd is the drift coefficient, and σ : R+ × Rd ×A → Rd×d′ is the covariance
matrix (or diffusion coefficient) of the state variable. Here the superscript ‘u’ in Xu

t emphasizes the
dependence of the state variable on control u. The goal of the control problem is to maximize the
total discounted reward (or objective functional), leading to the (optimal) value function:

J̊(t, x) := sup
u

E

[∫ T

t

e−β(s−t)r(s,Xu
s , us)ds+ e−β(T−t)h(Xu

T )

∣∣∣∣Xu
t = x

]
, (2.2)

where r : R+ × Rd ×A → R is the running reward, h : Rd → R is the terminal reward, and β > 0 is
the discount factor.

In the classical setting, the functional forms of r, h, b, σ are known. The optimal control is gen-
erally represented as a deterministic mapping from the current time and state to the action space:
u∗t = u∗(t,X∗t ). The mapping u∗ is called an optimal feedback control policy, and the corresponding
optimally controlled process (X∗t , t ≥ 0) satisfies the following SDE:

dX∗t = b(t,X∗t , u
∗(t,X∗t ))dt+ σ(t,X∗t , u

∗(t,X∗t ))dWt,

provided that it is well-posed. Optimal policies are derived by powerful approaches such as dynamic
programming or maximum principle; see [8, 42] for detailed accounts of the classical stochastic control
theory.

2.2. Exploratory control problem for RL. When the model parameters are unknown,1 the RL
approach explores the unknown environment and learns optimal controls through repeated trials and

1In many practical problems, the parameters b, σ are unknown while the rewards r, h may be specified in advance.
The problem where r, h are unknown and need to be learned from the observed (optimal) actions is referred to as

inverse reinforcement learning [23, 29].
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errors. This calls for an essentially and drastically different school of thoughts from that of the classical
control theory.

Inspired by this, [40] models exploration by a probability distribution of controls π = (πt(·), 0 ≤
t ≤ T ) over the action space A from which each trial is sampled. The exploratory state process is:

dXπ
t = b̃(t,Xπ

t , πt)dt+ σ̃(t,Xπ
t , πt)dW̃t, (2.3)

where (W̃t, t ≥ 0) is a d-dimensional Ft-adapted Brownian motion, and the coefficients b̃(·, ·, ·) and
σ̃(·, ·, ·) are defined by

b̃(t, x, π) :=

∫
A
b(t, x, a)π(a)da and σ̃(t, x, π) :=

(∫
A
σ(t, x, a)σ(t, x, a)Tπ(a)da

) 1
2

, (2.4)

for (t, x, π) ∈ R+ × Rd ×P(A), with P(A) being the set of absolutely continuous probability density
functions on A. The distributional control π = (πt(·), 0 ≤ t ≤ T ) is also known as the relaxed control
in the control literature. The objective is to maximize the entropy-regularized problem:

J∗(t, x) := sup
π
J(t, x;π)

:= sup
π

E
[ ∫ T

t

e−β(s−t)
∫
A

[r(s,Xπ
s , a)− γ log πs(a)]πs(a)da ds+ e−β(T−t)h(Xπ

T )

∣∣∣∣Xπ
t = x

]
,

(2.5)
where J(·, ·;π) denotes the value function under the control π(·), and γ > 0 is the (temperature)
parameter representing the weight on exploration (so a greater γ encourages more exploration).

Let

H(t, x, a, p, q) := b(t, x, a) p+
1

2
Tr
(
σ(t, x, a)σT (t, x, a)q

)
+ r(t, x, a)

be the generalized Hamiltonian. According to [36, Section 5], under suitable conditions on the pa-
rameters (r, h, b, σ), J∗ is the solution to the exploratory Hamilton–Jacobi–Bellman (HJB) equation:{

∂tJ
∗ + γ log

∫
A exp

(
1
γH(t, x, a,∇J∗,∇2J∗)

)
da− βJ∗ = 0,

J∗(T, x) = h(x).
(2.6)

The corresponding optimal (exploratory) feedback control policy is the Gibbs measure:

π∗(· | t, x) ∝ exp

(
1

γ
H(t, x, ·,∇J∗,∇2J∗)

)
. (2.7)

See [36, 45] for further development on the exploratory control problem (2.5), and its HJB equation
(2.6).

In the remainder of this paper, we assume that control only appears in the drift term.2 That is,
σ(t, x, a) = σ(t, x) is independent of the control; so the resulting exploratory state process is governed
by

dXπ
t = b̃(t,Xπ

t , πt)dt+ σ(t,Xπ
t )dW̃t. (2.8)

2Our analysis relies on the BSDE representation of the exploratory control problem, where control being only in the
drift term corresponds to a semi-linear PDE. The case where control also appears in the diffusion term requires a more

complicated stochastic representation of fully nonlinear PDEs; see [4, 25]. This is also related to the second-order risk
adjustment of stochastic maximum principle when control enters into the diffusion term; see [26] and [42, Chapter 3].
We leave this case for future work.
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2.3. q-learning. The main task of RL is to solve the entropy-regularized problem (2.5) by learning
its optimal policy (2.7).

The first idea, based on the policy improvement theorems in [16, 41], is to approximate π∗(· | ·, ·)
by a sequence of controls πn(· | ·, ·) such that the corresponding value functions Jn are nondecreasing,
i.e. Jn+1(t, x) ≥ Jn(t, x) for all n and all (t, x). The construction of the policies πn(· | ·, ·) is through
the iterations:

πn+1(· | t, x) ∝ exp

(
1

γ
H(t, x, ·,∇Jn,∇2Jn)

)
. (2.9)

This approach is referred to as “exploratory policy improvement” aiming to approximate the optimal
policy. However, the functions (b, σ, r, h) are unknown in the RL setting, whereas the sampling (2.9)
requires an oracle access to them. Moreover, the derivatives of the value functions (∇Jn,∇2Jn) are
generally not easy to evaluate even if one can learn Jn through policy evaluation, which yields further
difficulty in updating the policy.

The second idea, as proposed in [16], is to learn directly a term equivalent to H(t, x, a,∇Jn,∇2Jn)
for the purpose of sampling (2.9). That term is called the (little) q-function (analogous to the Q-
function in the classical discrete-time RL for MDPs). Specifically, given a control π(·), the q-function
is

q(t, x, a;π) : =
∂J

∂t
(t, x;π) +H

(
t, x, a,∇J(t, x;π),∇2J(t, x;π)

)
− βJ(t, x;π)

= b(t, x, a)∇J(t, x;π) + r(t, x, a) +
∂J

∂t
(t, x;π) +

1

2
Tr
(
σ2(t, x)∇2J(t, x;π)

)
− βJ(t, x;π).

(2.10)
Denote by aπ = (aπt , 0 ≤ t ≤ T ) a control realization from sampling the policy π(·). The key takeaway
in [16] is to observe the fact that

e−βsJ(s,Xπ
s ;π) +

∫ s

t

e−βu [r(u,Xπ
u , a

π
u)− q(u,Xπ

u , a
π
u;π)] du, t ≤ s ≤ T, (2.11)

is a martingale. By parametrizing (J(t, x;π), q(t, x, a;π)) with {(Jθ(t, x), qφ(t, x, a))}θ,φ, the mini-
mization of the martingale loss function motivates the following optimization problem:

min
(θ,φ)

E

∫ T

0

{
e−β(T−t)h(Xπ

T )− Jθ(t,Xπ
t ) +

∫ T

t

e−β(s−t)[r(s,Xπ
s , a

π
s )− qφ(s,Xπ

s , a
π
s )]ds

}2

dt

 .
(2.12)

Problem (2.12) can be solved by stochastic gradient descent (SGD):

θ ← θ + αθ

∫ T

0

∂Jθ

∂θ
(t,Xπ

t )Gt:T dt,

φ← φ+ αφ

∫ T

0

∫ T

t

e−β(s−t) ∂q
φ

∂φ
(s,Xπ

s , a
π
s )dsGt:T dt,

where Gt:T := e−β(T−t)h(Xπ
T ) − Jθ(t,Xπ

t ) +
∫ T
t
e−β(s−t)[r(s,Xπ

s , a
π
s ) − qφ(s,Xπ

s , a
π
s )]ds, and αθ, αφ

are user-defined learning rates. Note that in actual implementation of this procedure one needs to
discretize the integrals involved and takes actions (while observing the resulting states and reward
signals) at the corresponding discretized time points. Thus, the update rule is entirely data driven
without having to know/learn any model parameters.

Now we apply the above procedure to each policy iteration. Since only the term H
(
t, x, a,∇J,∇2J

)
in (2.10) involves the control variable a, the policy update (2.9) is equivalent to

πn+1(· | t, x) ∝ exp

(
1

γ
q(t, x, ·;πn)

)
.
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Using the SGD step in each policy update yields the q-learning algorithm: start with some (θ1, φ1)
and a control policy π1(· | ·, ·), and for n ≥ 1,

(1) Update

θn+1 = θn + αθ,n

∫ T

0

∂Jθ

∂θ |θ=θn
(t,Xπn

t )Gnt:T dt,

φn+1 = φn + αφ,n

∫ T

0

∫ T

t

e−β(s−t) ∂q
φ

∂φ |φ=φn

(s,Xπn

s , aπ
n

s )dsGnt:T dt

(2.13)

whereGnt:T := e−β(T−t)h(Xπn

T )−Jθn(t,Xπn

t )+
∫ T
t
e−β(s−t)[r(s,Xπn

s , aπ
n

s )−qφn(s,Xπn

s , aπ
n

s )]ds.

(2) Sample

πn+1(· | t, x) ∝ exp

(
1

γ
qφn+1(t, x, ·)

)
. (2.14)

3. Convergence of exploratory policy improvement

In this section, we study the convergence of exploratory policy improvement by assuming an oracle
access to some of the model parameters as well as the value functions. This allows us to understand
how policy improvement itself works, and our result (Theorem 3.2) shows that it is exponentially fast.
The arguments will then be used for the subsequent (model-free) analysis of the q-learning algorithm
(2.13)–(2.14); so this section is also a technical preparation for later development.

Recall (2.8) that defines the exploratory state process Xπ. The exploratory policy improvement
starts with a control policy π1(· | ·, ·), and for n ≥ 1,

Jn(t, x) := E
[ ∫ T

t

e−β(s−t)
∫
A
[r(s,Xπn

s , a)−γ log πn(a|s,Xπn

s )]πn(a|s,Xπn

s )da ds+e−β(T−t)h(Xπn

T )

∣∣∣∣Xπn

t = x

]
.

(3.1)

Sample

πn+1(· | t, x) ∝ exp

(
1

γ
H(t, x, ·,∇Jn(t, x),∇2Jn(t, x))

)
∝ exp

(
1

γ
(b(t, x, ·)∇Jn(t, x) + r(t, x, ·))

)
,

(3.2)

where we omit to write out the dependence of γ in the expressions of Jn and πn for simplicity. Note
that since σ(t, x, a) = σ(t, x), only the terms b(t, x, a)∇Jn(t, x) and r(t, x, a) in the Hamiltonian
involve the control a. This yields the (simpler) policy update (3.2).

As previously mentioned, we assume that the value function Jn defined in (3.1) (and hence its
gradient ∇Jn) and the functions b, r are all accessed. This corresponds to the model-based RL
approach; so we do not need to estimate these functions nor any of their combinations. Here, our goal
is to bound

|Jn(t, x)− J∗(t, x)| , in terms of n (and γ),

where J∗ is the optimal value function of the exploratory control problem (2.5). The convergence of
Jn was proved in [13], but with no convergence rate given. After completing the present paper, we
learned that two recent working papers [19, 38] studied the convergence rate of model-based policy
iteration (3.2). Their results, the exponential convergence of Jn, are similar to Theorem 3.2 below.
Nevertheless, our BSDE approach differs from [19, 38], where [38] is completely based on a PDE
analysis, and [19] relies on Malliavin calculus. Moreover, our result provides an explicit dependence
on the level of exploration γ, which is important in efficient sampling of the policies (3.2) but is
missing in the aforementioned work. We stress again that the result in this section is a preparation
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for solving the “learning” problem in Section 4 that is at the heart of model-free q-learning, which
neither of [19, 38] considered.3

To proceed, we make the following (mild) assumptions.

Assumption 3.1.

(i) A is a compact set.
(ii) r, h, b, σ are continuous in their respective arguments.

(iii) There exist b, σ, r > 0 such that for any (t, x, a),

|b(t, x, a)| ≤ b, 1

σ
≤ |σ(t, x)| ≤ σ and |r(t, x, a)| ≤ r.

(iv) There exists K > 0 such that for any (t, x, y, a),

|b(t, x, a)− b(t, y, a)|+ |σ(t, x)− σ(t, y)|+ |r(t, x, a)− r(t, y, a)|+ |h(x)− h(y)| ≤ K|x− y|.

Our result is stated as follows.

Theorem 3.2. Let Assumption 3.1 hold, and fix η ∈ (0, 1). There exist L,C > 0 (independent of γ
and n) such that

|J∗(t, x)− Jn(t, x)|2 ≤ Cηneθ(γ)(T−t), (3.3)

where θ(γ) := β + (1 + η−1)L2
(

1 + e
L
γ + 1

γ e
L
γ

)2

.

We make several remarks before proving the theorem. First, the bound (3.3) implies that the
exploratory policy constructed by (3.2) converges exponentially in n. The bound depends explicitly
on the level of exploration γ via the term eθ(γ)(T−t). Observe that θ(γ) decreases in γ, which suggests
to take a large γ for a faster convergence. In fact, there are two advantages of choosing a large γ:

• Larger γ induces faster convergence of the policy improvement (Theorem 3.2).

• Larger γ facilitates Markov chain Monte Carlo (MCMC) sampling of the policy πn(· | t, x) ([5,
Chapter 4], [20, Section 2.6]).4

Second, recall that J̊ is the optimal value function of the original, classical control problem (2.2).
It is known [36, Corollary 4.7] that under suitable conditions on the parameters,

|J∗(t, x)− J̊(t, x)| ≤ Cγ ln(1/γ), as γ → 0+. (3.4)

Combining (3.3) and (3.4) yields

|Jn(t, x)− J̊(t, x)| . γ ln(1/γ)︸ ︷︷ ︸
bias

+ ηneθ(γ)(T−t)︸ ︷︷ ︸
policy improvement error

, (3.5)

giving rise to a tradeoff between bias (due to exploration) and policy improvement error in γ. Heuris-
tically, minimizing the right side of (3.5) over γ leads to the equation

ln(γ) + 1

θ′(γ)
e−θ(γ)(T−t) = Cηn(T − t)

where C is a constant independent of γ and n. This suggests that we could change the temperature
parameter γ over iterations, specifically an exploratory annealing γ = γn ↓ 0 (as n → ∞), to get a

3In this sense, [19, 38] are “numerical” papers solving classical stochastic control problems, while ours is a “learning”

paper solving the model-free counterparts.
4In general, the MCMC sampler of πn(· | t, x) converges at a rate of exp(−e−

1
γ t) as the level of exploration γ → 0+.

This implies for each iteration n, sampling πn(· | t, x) requires O(e
1
γ ) time complexity, which is exponentially large if γ

is chosen to be small.
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shaper bound for |Jn(t, x)− J̊(t, x)|. Moreover, we can show (via an argument similar to that in the
proof of Theorem 4.2) that

|Jn(t, x)− J̊(t, x)| .
n∑
k=1

ηn−kγk. (3.6)

Thus, γn needs to be fast-decaying so that the right side of (3.6) converges to zero (a sufficient
condition is

∑
k γk < ∞). On the other hand, MCMC sampling πn(· | t, x) in each iteration has

O(e
1
γn ) time complexity, which requires γn to decay slowly to avoid the curse of dimensionality. So

the annealing will benefit the convergence of policy iteration yet at the cost of sampling hardness.
For this reason, in this paper we focus on the fixed level of exploration γ > 0, leaving the study of
exploratory annealing for future work.

3.1. Auxiliary results. This subsection collects a few useful results for proving Theorem 3.2. The
next lemma, which follows from the Feynman–Kac formula, specifies the PDE satisfied by the value
function Jn (see [15, Lemma 2]).

Lemma 3.3. Under Assumption 3.1, Jn defined by (3.1) is the solution to{
∂tJ

n +
∫
A
(
H(t, x, a,∇Jn,∇2Jn)− γ log πn(a | t, x)

)
πn(a | t, x) da− βJn = 0,

Jn(T, x) = h(x).
(3.7)

The following result of the BSDEs will be used to bound |Jn(t, x)− J∗(t, x)|.

Lemma 3.4. Let Ft(y, z, Z) be a measurable function of (t, y, z, Z, ω) such that (Ft(y, z, Z), 0 ≤
t ≤ T ) is predictable for any fixed (y, z, Z) and (Ft(0, 0, 0), 0 ≤ t ≤ T ) ∈ H0

0, and there exist
M1,M2,M3 > 0,

|Ft(y′, z′, Z ′)− Ft(y, z, Z)| ≤M1|y′ − y|+M2|z′ − z|+M3|Z ′ − Z| a.s.

Then we have

(i) For ξ ∈ L2(FT ), there exists a unique solution (Y,Z) to

Yt = ξ +

∫ T

t

Ft(Ys, Zs, Zs)ds−
∫ T

t

ZsdW̃s, 0 ≤ t ≤ T a.s.

(ii) For ξ ∈ L2(FT ) and z ∈ H0
0, there exists a unique solution (Y,Z) to

Yt = ξ +

∫ T

t

Ft(Ys, zs, Zs)ds−
∫ T

t

ZsdW̃s, 0 ≤ t ≤ T a.s. (3.8)

(iii) Let (Y 1, Z1) and (Y 2, Z2) be the solutions to (3.8) corresponding to z1 ∈ H0
0 and z2 ∈ H0

0

respectively. Fixing η ∈ (0, 1), we have for θ ≥M1 + (1 + η−1)(M2 +M3)2,

eθtE|Y 1
t − Y 2

t |2 + |Z1 − Z2|2Hθt ≤ η|z
1 − z2|2Hθt , 0 ≤ t ≤ T.

Proof. (i) and (ii) follow from the standard BSDE theory; see, e.g., [27, Theorem 6.3.3], and (iii) from
the proof of [17, Lemma A.5]. �

3.2. Proof of Theorem 3.2. We need a few lemmas to prove Theorem 3.2. Recall the definition of
the optimal feedback control π∗ from (2.7), and let Xπ∗ be the corresponding state process. Denote
(with a slight abuse of notation)

π(a | s, x, z) ∝ exp

(
1

γ

(
b(s, x, a)σ−1(s, x)z + r(s, x, a)

))
; (3.9)

so we can rewrite

πn(a | s, x) = π(a | s, x,
(
σ∇Jn−1

)
(s, x)) and π∗(a | s, x) = π(a | s, x, (σ∇J∗) (s, x)).
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Define

Gs(z, Z) :=

∫
A

[
b(s,Xπ∗

s , a)σ−1(s,Xπ∗

s )Z + r(s,Xπ∗

s , a)

− γ log π(a | s,Xπ∗

s , z)

]
π(a | s,Xπ∗

s , z) da,

(3.10)

which is the key to our analysis. The next lemma studies the Lipschitz property of Gs.

Lemma 3.5. Let Assumption 3.1 hold. Then for |z|, |Z| ≤ C, there exists L > 0 (independent of γ)
such that

|Gs(z′, Z ′)−Gs(z, Z)| ≤ L
(

1 + e
L
γ +

1

γ
e
L
γ

)
|z′ − z|+ L|Z ′ − Z| a.s. (3.11)

Proof. Observe that

|Gs(z′, Z ′)−Gs(z, Z)| ≤ E1 + E2 + E3, (3.12)

where

E1 :=

∣∣∣∣∫
A
r(s,Xπ∗

s , a)
(
π(a | s,Xπ∗

s , z′)− π(a | s,Xπ∗

s , z)
)
da

∣∣∣∣ ,
E2 :=

∣∣∣∣∫
A
b(s,Xπ∗

s , a)σ−1(s,Xπ∗

s )
(
Z ′π(a | s,Xπ∗

s , z′)− Zπ(a | s,Xπ∗

s , z)
)
da

∣∣∣∣ ,
E3 := γ

∣∣∣∣∫
A

(
log π(a | s,Xπ∗

s , z′)π(a | s,Xπ∗

s , z′)− log π(a | s,Xπ∗

s , z)π(a | s,Xπ∗

s , z)
)
da

∣∣∣∣ .
By Assumption 3.1-(iii), we get

E1 ≤ r
∣∣∣π(· | s,Xπ∗

s , z′)− π(· | s,Xπ∗

s , z)
∣∣∣
L1(A)

= 2r dTV

(
π(· | s,Xπ∗

s , z′), π(· | s,Xπ∗

s , z)
)
. (3.13)

Recall that

π(a | s, x, z) =
exp

(
1
γ (b(s, x, a)σ−1(s, x)z + r(s, x, a)

)
∫
A exp

(
1
γ (b(s, x, a)σ−1(s, x)z + r(s, x, a)

)
da
.

Applying [33, Theorem 8], 5 we get for |z′ − z| ≤ C (and hence |z′| ≤ 2C):

dTV (π(· | s, x, z′), π(· | s, x, z))

≤
exp

(
2
γ (bσC + r)

)
∫
A exp

(
1
γ (b(s, x, a)σ−1(s, x)z + r(s, x, a)

)
da

∣∣∣∣ 1γ b(s, x, a)σ−1(t, x)(z′ − z)
∣∣∣∣
L1(A)

≤
exp

(
3
γ (bσC + r

)
|A|

bσ|z − z′||A|
γ

=
bσ

γ
exp

(
3

γ
(bσC + r)

)
|z′ − z|.

For |z′ − z| > C, it is obvious that dTV (π(· | s, x, z′), π(· | s, x, z)) ≤ |z′ − z|/C. Consequently,

dTV (π(· | s, x, z′), π(· | s, x, z)) ≤
(
bσ

γ
exp

(
3

γ
(bσC + r)

)
+

1

C

)
|z′ − z|. (3.14)

5For two Gibbs measures π(da) = eΨ(a)da/Z and π′(da) = eΨ
′(a)da/Z′, [33, Theorem 8] provides a bound on

dTV (π(·), π′(·)) under the assumption that sup Ψ = 0. This assumption can be removed by modifying the bound to be

dTV (π(·), π′(·)) ≤
esupa(Ψ∨Ψ′)

Z
|Ψ−Ψ′|L1 .
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Combining (3.13) and (3.14) yields

E1 ≤ 2r

(
bσ

γ
exp

(
3

γ
(bσC + r)

)
+

1

C

)
|z′ − z|. (3.15)

Similarly, we get

E2 ≤ bσ
(∫
A
|Z ′ − Z|π(a | s,Xπ∗

s , z′) da+

∫
A
|Z| |π(a | s,Xπ∗

s , z′)− π(a | s,Xπ∗

s , z)|da
)

≤ bσ
(
|Z ′ − Z|+ 2C dTV

(
π(· | s,Xπ∗

s , z′), π(· | s,Xπ∗

s , z)
))

≤ bσ|Z ′ − Z|+
(

2bσC

γ
exp

(
3

γ
(bσC + r)

)
+ 2bσ

)
|z′ − z|.

(3.16)

Finally, we have

E3 ≤
∣∣∣∣∫
A
r(s,Xπ∗

s , a)
(
π(a | s,Xπ∗

s , z′)− π(a | s,Xπ∗

s , z)
)
da

∣∣∣∣︸ ︷︷ ︸
(a)

+

∣∣∣∣∫
A
b(s,Xπ∗

s , a)σ−1(s,Xπ∗

s )
(
z′π(a | s,Xπ∗

s , z′)− zπ(a | s,Xπ∗

s , z)
)
da

∣∣∣∣︸ ︷︷ ︸
(b)

+ γ

∣∣∣∣∣∣log

∫A exp
(

1
γ (b(s,Xπ∗

s , a)σ−1(s,Xπ∗

s )z′ + r(s,Xπ∗

s , a)))
)
da∫

A exp
(

1
γ (b(s,Xπ∗

s , a)σ−1(s,Xπ∗
s )z + r(s,Xπ∗

s , a)))
)
da

∣∣∣∣∣∣︸ ︷︷ ︸
(c)

≤
(

3bσ +
2bσ(C + r)

γ
exp

(
3

γ
(bσC + r)

)
+

2r

C

)
|z′ − z|+ (c),

(3.17)

where (a) is bounded by E1, and (b) is bounded by E2 with (Z,Z ′) = (z, z′). Now we proceed to
bounding the term (c). For |z′| > 2C, we have |z′ − z| > C. Thus,∣∣∣∣∣∣log

∫A exp
(

1
γ (b(s, x, a)σ−1(s, x)z′ + r(s, x, a))

)
da∫

A exp
(

1
γ (b(s, x, a)σ−1(s, x)z + r(s, x, a))

)
da

∣∣∣∣∣∣ ≤ bσ(|z′|+ C) + 2r

γ

≤ bσ|z′ − z|+ 2(bσC + r)

γ

≤ 3bσ + 2r/C

γ
|z′ − z|.

(3.18)

Now consider the case when |z′| ≤ 2C. Since | log(u′/u)| ≤ |u′ − u|/(u ∧ u′) for u, u′ ≥ 0, we get∣∣∣∣∣∣log

∫A exp
(

1
γ (b(s, x, a)σ−1(s, x)z′ + r(s, x, a))

)
da∫

A exp
(

1
γ (b(s, x, a)σ−1(s, x)z + r(s, x, a))

)
da

∣∣∣∣∣∣ ≤ (d)

(e)
, (3.19)

where

(d) :=

∫
A

∣∣∣∣exp

(
1

γ
(b(s, x, a)σ−1(s, x)z′ + r(s, x, a))

)
− exp

(
1

γ
(b(s, x, a)σ−1(s, x)z + r(s, x, a))

)∣∣∣∣ da,
(e) :=

∫
A

exp

(
1

γ
(b(s, x, a)σ−1(s, x)z′ + r(s, x, a))

)
da ∧

∫
A

exp

(
1

γ
(b(s, x, a)σ−1(s, x)z + r(s, x, a))

)
da.
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By [33, Theorem 5], we have

(d) ≤ bσ|A|
γ

exp

(
1

γ
(bσC + r)

)
|z′ − z|, (e) ≥ |A| exp

(
−2bσC + r

γ

)
. (3.20)

The estimates (3.18)–(3.20) yield

(c) ≤
(
bσ exp

(
3bσC + 2r

γ

)
+ 3bσ +

2r

C

)
|z′ − z|. (3.21)

By (3.17) and (3.21), we obtain

E3 ≤
(

6bσ +
4r

C
+ bσ

(
1 +

2(C + r)

γ

)
exp

(
3

γ
(bσC + r)

))
|z′ − z|. (3.22)

Combining (3.12) with (3.15), (3.16) and (3.22) yields (3.11). �

The following result establishes representations for Jn and J∗.

Lemma 3.6. Let Assumption 3.1 hold. There exist (Ŵ , P̂), with Ŵ being P̂-Brownian motion, such
that

(i) We have

Jn(t, x) = h(Xπ∗

T ) +

∫ T

t

[Gs(Z
n−1
s , Zns )− βY ns ] ds−

∫ T

t

Zns dŴs, (3.23)

where Y ns := Jn(s,Xπ∗

s ) and Zns := (σ∇Jn) (s,Xπ∗

s ).

(ii) The BSDE

Y t,xs = h(Xπ∗

T ) +

∫ T

s

[Gu(Zt,xu , Zt,xu )− βY t,xu ] du−
∫ T

s

Zt,xu dŴu, t ≤ s ≤ T, (3.24)

has a unique solution (Y t,x, Zt,x) (the superscript stands for Xπ∗

t = x). Moreover, J∗(t, x) =

Y t,xt .

Proof. (i) Applying Itô’s formula to Jn(s,Xπ∗

s ) and noting Lemma 3.3, we get

dJn(s,Xπ∗

s )

=

[
∂tJ

n(s,Xπ∗

s ) +
1

2
Tr(σσT∇2Jn)(s,Xπ∗

s ) + b̃(s,Xπ∗

s , π∗)∇Jn(s,Xπ∗

s )

]
ds+ (σ∇Jn) (s,Xπ∗

s )dW̃s

=

[
b̃(s,Xπ∗

s , π∗)∇Jn(s,Xπ∗

s )− b̃(s,Xπ∗

s , πn)∇Jn(s,Xπ∗

s )− r̃(s,Xπ∗

s , πn)

+ γ

∫
A

log πn(a | s,Xπ∗

s )πn(a | s,Xπ∗

s )da+ βJn(s,Xπ∗

s )

]
ds+ (σ∇Jn) (s,Xπ∗

s )dW̃s,

(3.25)

where π∗ and πn appearing in b̃
(
s,Xπ∗

s , ·
)
, r̃
(
s,Xπ∗

s , ·
)

stand for π∗(· | s,Xπ∗

s ) and πn(· | s,Xπ∗

s )
respectively.

Let P̂ be a change of measure of P, with the Radon–Nikodym derivative:

dP̂
dP

= E
(
−
∫ ·

0

b̃(s,Xπ∗

s , π∗)σ−1(s,Xπ∗

s ) dW̃s

)
T

,

where E(·) is the stochastic exponential (see [28, p.328]). So Ŵt := W̃t+
∫ t

0
b̃(s,Xπ∗

s , π∗)σ−1(s,Xπ∗

s ) ds

is a P̂-Brownian motion.
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Set Y ns := Jn(s,Xπ∗

s ) and Zns := (σ∇Jn) (s,Xπ∗

s ); so Y nt = Jn(t, x). By integrating (3.25) on
[t, T ] and noting that πn(a | s,Xπ∗

s ) = π(a | s,Xπ∗

s , Zn−1
s ), we get

Y nt = g(Xπ∗

T )−
∫ T

t

[
b̃(s,Xπ∗

s , π∗)σ−1(s,Xπ∗

s )Zns −Gs(Zn−1
s , Zns ) + βY ns

]
ds−

∫ T

t

Zns dW̃s,

which leads to (3.23).

(ii) The fact that the BSDE (3.24) has a unique solution follows from Lemma 3.4-(i) noting Lemma
3.5. We have then

dY t,xs =

(
b̃(s,Xπ∗

s , π∗)σ−1(s,Xπ∗

s )Zt,xs + βY t,xs

− γ log

∫
A

exp

(
1

γ
(b(u,Xπ∗

u , a)σ−1(s,Xπ∗

s )Zt,xs + r(u,Xπ∗

u , a))

)
da

)
ds+ Zt,xs dW̃s.

A standard BSDE argument (see [6, Proposition 4.3] or [27, Section 6.3]) shows that Y t,xt = v(t, x) is
the solution to the semi-linear PDE:{

∂tv + 1
2 Tr

(
σσT∇2v

)
+ γ log

∫
A exp

(
1
γ (b(t, x, a)∇v + r(t, x, a))

)
da− βv = 0,

v(T, x) = h(x).

Note that γ
∫
AH(t, x, a,∇v,∇2v) da = 1

2 Tr
(
σσT∇2v

)
+γ log

∫
A exp

(
1
γ (b(t, x, a)∇v + r(t, x, a))

)
da.

Thus, Y t,xt is the solution to the HJB equation (2.6), i.e. Y t,xt = J∗(t, x). �

Now we prove Theorem 3.2.

Proof of Theorem 3.2. Let Fs(Y, z, Z) := Gs(z, Z)− βY . It follows from Lemma 3.6 that Jn(t, x) =

Y nt and J∗(t, x) = Y t,xt where

Y ns = h(Xπ∗

T ) +

∫ T

s

Fu(Y nu , Z
n−1
u , Znu ) du−

∫ T

s

ZnudŴu,

Y t,xs = h(Xπ∗

T ) +

∫ T

s

Fu(Y t,xu , Zt,xu , Zt,xu ) du−
∫ T

s

Zt,xu dŴu.

Note that |∇J∗| ≤ M (with M independent of γ; see [36]), and Zt,xs = (σ∇J∗) (s,Xπ∗

s ). By Lemma
3.5, we get

|Fu(Y nu , Z
n−1
u , Znu )− Fu(Y t,xu , Zt,xu , Zt,xu )|

≤ β|Y nu − Y t,xu |+ L

(
1 + e

L
γ +

1

γ
e
L
γ

)
|Zt,xu − Zn−1

u |+ L|Zt,xu − Znu |.

Applying Lemma 3.4-(iii) with M1 = β, M2 = L
(

1 + e
L
γ + 1

γ e
L
γ

)
and M3 = L, we have for θ ≥

β + (1 + η−1)L2
(

1 + e
L
γ + 1

γ e
L
γ

)2

,

eθtÊ|Y t,xt − Y nt |2 + |Zt,x − Zn|2Ĥθt ≤ η|Z
t,x − Zn−1|2Ĥθt ,

where Ĥθt is defined under P̂. So we get |Zt,x − Zn|2
Ĥθt
≤ ηn|Zt,x − Z0|2

Ĥθt
, and

|J∗(t, x)− Jn(t, x)|2 ≤ ηnÊ
∫ T

t

eθ(s−t)|σ(s,Xπ∗

s )|2|∇J∗(s,Xπ∗

s )−∇J0(s,Xπ∗

s )|2ds

≤ ηneθ(T−t)Ê
∫ T

t

|σ(s,Xπ∗

s )|2|∇J∗(s,Xπ∗

s )−∇J0(s,Xπ∗

s )|2ds

which proves (3.3). �
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4. q-learning and regret

In this section, we study the q-learning algorithm (2.13)–(2.14) and derive its regret. As an in-
termediate step, we consider a “semi”-q-learning algorithm in Section 4.1, where value functions of
given policies can be accessed and we only need to learn the q-function. The advantage of studying
the semi-q-learning first is to present the essential idea while simplifying notation. We will show how
to adapt the arguments in Section 3 to derive the convergence rate of the semi-q-learning algorithm.
The result for the q-learning algorithm is then provided in Section 4.2.

4.1. Semi-q-learning. Here we assume an oracle access to the value functions Jn, and the resulting
algorithm is called the semi-q-learning. We start with some initial parameter value φ1 for the q-
function and a control policy π1(· | ·, ·), and for n ≥ 1,

(1) Update

φn+1 = φn + αφ,n

∫ T

0

∫ T

t

e−β(s−t) ∂q
φ

∂φ |φ=φn

(s,Xπn

s , aπ
n

s )dsGnt:T dt, (4.1)

whereGnt:T := e−β(T−t)h(Xπn

T )−Jn(t,Xπn

t )+
∫ T
t
e−β(s−t)[r(s,Xπn

s , aπ
n

s )−qφn(s,Xπn

s , aπ
n

s )]ds.

(2) Sample

πn+1(a | t, x) ∝ exp

(
1

γ
qφn+1(t, x, a)

)
da. (4.2)

Recall (3.1) that defines Jn and it follows from (2.10) that

q(t, x, a;πn) = b(t, x, a)∇Jn(t, x) + r(t, x, a) +
∂Jn

∂t
(t, x) +

1

2
Tr
(
σ2(t, x)∇2Jn(t, x)

)
− βJn(t, x).

To avoid undue technicality, we assume that ∇Jn 6= 0 almost everywhere.6 Let bn+1(t, x, a) be a
measurable function such that the following holds almost everywhere7:

qφn+1(t, x, a) = bn+1(t, x, a)∇Jn(t, x) + r(t, x, a) +
∂Jn

∂t
(t, x) +

1

2
Tr
(
σ2(t, x)∇2Jn(t, x)

)
− βJn(t, x).

(4.3)
The policy update (4.2) can now be written as:

πn+1(a | t, x) ∝ exp

(
1

γ
(bn+1(t, x, a)∇Jn(t, x) + r(t, x, a))

)
da. (4.3’)

As qφn+1(t, x, a) is expected to be close to q(t, x, a;πn) when n is large, so is bn(t, x, a) to b(t, x, a).
To present our result, we need the following condition in addition to Assumption 3.1.

Assumption 4.1. There exists b > 0 such that ess supt,x,a |bn| ≤ b for all n.

The result below shows how the convergence of the value functions depends in an explicit way on
that of the q values.

Theorem 4.2. Let Assumptions 3.1 and 4.1 hold, and assume that there is M > 0 such that |∇Jn| ≤
M for all n. Fix η ∈ (0, 1). There exist L, C > 0 (independent of γ and n) such that

|J∗(t, x)− Jn(t, x)|2 ≤ C

(
ηneΛ(γ)(T−t) +

(
1 +

1

γ
e
L
γ

) n∑
k=1

ηn−k|q(·;πk)− qφk+1 |∞

)
, (4.4)

6It is known [41] that for linear–quadratic (LQ) problems, ∇Jn(t, x) = An(t)x + Bn(t) with An(t) > 0 for a
suitably chosen initial policy. This satisfies ∇Jn(t, x) 6= 0 almost everywhere. The example presented immediately

after Corollary 4.5 is another instance satisfying this assumption.
7Because ∇Jn 6= 0 almost everywhere, bn(t, x, a) is uniquely determined if d = 1, and are solutions to the underde-

termined system (4.3) if d ≥ 2. The measurability follows from standard measurable selection theory, e.g., [39].
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where Λ(γ) := β + (1 + η−1)L2
[
1 + e

L
γ + 1

γ e
L
γ + L

(
1 + 1

γ e
L
γ

)
supn |q(·;πn)− qφn+1 |∞

]2
.

A proof of Theorem 4.2 is delayed to Section 4.3, which is a “perturbed” variant of the arguments
in Section 3. Here let us make several comments. First, the assumption |∇Jn| ≤M for all n is again
to avoid excessive technicality. Because ∇J∗ is bounded and Jn is expected to be a proxy to J∗, it is
reasonable to assume that ∇Jn is uniformly bounded.

Second, the theorem quantifies the performance of the algorithm by how well the q values are
learned. We illustrate this with two cases:

• If infn |q(·;πn)− qφn+1 |∞ := δ > 0, i.e. the q values are not well approximated, then the right
side of (4.4) is bounded from below by

√
1− ηn ≥ 1− ηn, yielding at least a linear regret.

• If the q values are well learned, say |q(·;πn) − qφn+1 |∞ ≈ n−α for some α > 0, then (4.4)
specializes to:

|J∗(t, x)− Jn(t, x)|2 .
n∑
k=1

ηn−kk−α . n−α lnn,

where the second inequality is obtained by splitting the sum into [1, n− lnn] and [n− lnn, n]
and by taking η to be sufficiently small. The regret now is sublinear:

n∑
k=1

|J∗(t, x)− Jk(t, x)| .

 n1−α2 (lnn)
1
2 if α < 2,

(lnn)
3
2 if α = 2,

O(1) if α > 2.

(4.5)

Next we consider the convergence of the q values via the iteration (4.1). This is an instance of the
Robbins–Monro algorithm, which can be written as:

φn+1 = φn + αφ,nH(φn, (X
πn

t ), (aπ
n

t )︸ ︷︷ ︸
Un+1

), (4.6)

where

H(φ,U) :=

∫ T

0

∫ T

t

e−β(s−t) ∂q
φ

∂φ
(s,Xπφ

s , aπ
φ

s )dsGφt:T dt, (4.7)

with U = ((Xπφ

t ), (aπ
φ

t )), πφ(a | t, x) ∝ exp
(

1
γ q

φ(t, x, a)
)

andGφt:T := e−β(T−t)h(Xπφ

T )−J(t,Xπφ

t ;πφ)+∫ T
t
e−β(s−t)[r(s,Xπφ

s , aπ
φ

s )−qφ(s,Xπφ

s , aπ
φ

s )]ds. Clearly, (Un+1 |Un, . . . , U1, φn, . . . , φ1)
d
= (Un+1 |φn).

Also define
h(φ) := EH(φ,U). (4.8)

We need a few more assumptions to study the convergence rate of the stochastic approximation
(4.6) (or (4.1)).

Assumption 4.3.

(1) The ODE φ′(t) = h(φ(t)) has a unique stable equilibrium φ∗.

(2) There exists C > 0 such that E(|H(φn, Un+1)|2 |φn) ≤ C(1 + |φn|2).

(3) There exists κ > 0 such that (φ− φ∗)h(φ) ≤ −κ|φ− φ∗|2 in a neighborhood of φ∗.

(4) There exist ρφ, C > 0 such that |qφ − qφ′ |∞ ≤ C|φ− φ′|ρφ for all φ, φ′.

(5) There exists C > 0 such that |q(·;πφ)− q(·;π∗)|∞ ≤ CdTV (πφ, π∗) for φ in a neighborhood of
φ∗.

Set ∆ := |q(·;π∗) − qφ
∗
(·)|∞. The value of ∆ quantifies how close the family of functions {qφ}φ

approximates the optimal q function. When ∆ = 0 (if rarely the case), the family {qφ}φ is rich enough
to contain the optimal q function. The condition (1) ensures the optimal φ∗ is the only candidate for
the stochastic approximation. The conditions (2)–(5) will be used to quantify the convergence rate
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of the q values, where (2)–(3) are growth conditions of the SGD (4.6), (4) imposes Hölder regularity
of the function approximation {qφ}φ, and (5) specifies the sensitivity of the q function with respect
to the (stochastic) policies. Later we will give an example in which these conditions are satisfied.

The following result provides an error estimate of the semi-q-learning (??)–(4.2).

Theorem 4.4. Let the assumptions in Theorem 4.2 and Assumption 4.3 hold. Set αφ,n = A
nν+B for

some ν ≤ 1, A > α
2κ and B > 0, and let ε > 0. Then there exists C > 0 (independent of n, ε) such

that with probability 1− ε,

|J∗(t, x)− Jn(t, x)| ≤ C
(

∆ +
1

ερφ/2
n−

νρφ
4 (lnn)

1
2

)
, (4.9)

for ∆ sufficiently small. Consequently, the regret is:

n∑
k=1

|J∗(t, x)− Jk(t, x)| . ∆n+
1

ερφ/2

 n1−
νρφ
4 (lnn)

1
2 if νρφ < 4,

(lnn)
3
2 if νρφ = 4,

O(1) if νρφ > 4.

(4.10)

A proof of Theorem 4.4 will be given in Section 4.3. As previously mentioned, the error term ∆
in (4.9) (or (4.10)) comes from function approximations, which is typically related to the quality of
neural nets used, something that is not dictated or controlled by the q-learning in general. If the
family of functions {qφ}φ include the optimal q function, then we get the following corollary.

Corollary 4.5. Under the setting of Theorem 4.4 with ∆ = 0, there exists C > 0 (depending on γ
but not on n, ε) such that with probability 1− ε,

|J∗(t, x)− Jn(t, x)| ≤ C

ερφ/2
n−

νρφ
4 (lnn)

1
2 . (4.11)

Consequently, the regret is:

n∑
k=1

|J∗(t, x)− Jk(t, x)| . 1

ερφ/2

 n1−
νρφ
4 (lnn)

1
2 if νρφ < 4,

(lnn)
3
2 if νρφ = 4,

O(1) if νρφ > 4.

(4.12)

In particular, taking ν = 1 and ρφ = 1 (Lipschitz), we get a sublinear n
3
4 -regret bound.

Now we illustrate Assumption 4.3 with a simple one-dimensional linear example. Set β = 0, γ = 1,

b(t, x, a) = Ba for some B, σ(t, x, a) = 1, r(t, x, a) = 0, h(t, x, a) = x,

with the action space A = [0, 1]. Given a policy π(·), denote by E(π) :=
∫
A aπ(a)da and Ent(π) :=

−
∫
A log π(a)π(a)da its mean and differential entropy respectively. Observe that

J(t, x;π) = x+ (BE(π) + Ent(π))(T − t), q(t, x, a;π) = B(a− E(π))− Ent(π);

so ∇J(t, x;π) = 1 for any π(·). We parametrize qφ(t, x, a) = φa + log
(

φ
eφ−1

)
, and πφ(t, x, a) =

φ
eφ−1

eφa. A direct computation yields:

h(φ) = −φ
2

(
1

φ2
− eφ

(eφ − 1)2

)
T.

This function is plotted in Figure 1 (with T = 1) for visualization. The condition (1) is satis-
fied, as h(φ) has a unique zero φ∗ = 0 and h′(0) = − 1

24T < 0. Next, E(|H(φn, Un+1)|2 |φn) ≤
CT (1 + |φn|2) for some constant C > 0, and φh(φ) ≤ − 1

48φ
2 in a neighborhood of φ∗ = 0; so

the conditions (2)–(3) hold. Note that |qφ(t, x, a) − qφ
′
(t, x, a)| ≤ 2|φ − φ′|, leading to the condi-

tion (4) with ρφ = 1. Finally, |q(·;πφ) − q(·;π∗)|∞ ≤ B|E(πφ) − E(π∗)| + |Ent(πφ) − Ent(π∗)| ≤
2
(
B + max log π∗ + max 1

c∧π∗
)
dTV (πφ, π∗) for some constant c > 0 (depending on the neighborhood

of φ∗), which yields the condition (5).
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Figure 1. Plot of φ→ −φ2
(

1
φ2 − eφ

(eφ−1)2

)
.

4.2. q-learning. Now we consider the q-learning (2.13)–(2.14) by incorporating the policy evaluation
part for learning Jn. The idea is similar to the second half of Section 4.1, which we expand as follows.

The update (2.13) can be written as:

(θn+1, φn+1) = (θn, φn) + (αθ,n, αφ,n)H((θn, φn), (Xπn

t ), (aπ
n

t )︸ ︷︷ ︸
Un+1

), (4.13)

where

H((θ, φ), U) :=

(∫ T

0

∂Jθ

∂θ
(t,Xπφ

t )Gθ,φt:T dt,

∫ T

0

∫ T

t

e−β(s−t) ∂q
φ

∂φ
(s,Xπφ

s , aπ
φ

s )dsGθ,φt:T dt

)
, (4.14)

with U = ((Xπφ

t ), (aπ
φ

t )), πφ(a | t, x) ∝ exp
(

1
γ q

φ(t, x, a)
)

and Gθ,φt:T := e−β(T−t)h(Xπφ

T )−Jθ(t,Xπφ

t )+∫ T
t
e−β(s−t)[r(s,Xπφ

s , aπ
φ

s )− qφ(s,Xπφ

s , aπ
φ

s )]ds. Define

h(θ, φ) := E(H(φ, θ), U). (4.15)

We need the following assumptions.

Assumption 4.6.

(1) The ODE (θ′(t), φ′(t)) = h(θ(t), φ(t)) has a unique stable equilibrium (θ∗, φ∗).

(2) There exists C > 0 such that E(|H(φn, Un+1)|2 |φn) ≤ C(1 + |θn|2 + |φn|2).

(3) There exists κ > 0 such that (θ − θ∗, φ − φ∗)h(θ, φ) ≤ −κ
(
|φ− φ∗|2 + |θ − θ∗|2

)
in a neigh-

borhood of (θ∗, φ∗).

(4) There exist ρθ, C > 0 such that |Jθ − Jθ′ |∞ ≤ C|θ − θ′|ρθ and |qφ − qφ′ |∞ ≤ C|φ− φ′|ρφ for
all θ, θ′, φ, φ′.

(5) There exists C > 0 such that |q(·;πφ)− q(·;π∗)|∞ ≤ CdTV (πφ, π∗) for φ in a neighborhood of
φ∗.

Set ∆ := |J∗(·)− Jθ∗(·)|∞ ∨ |q(·;π∗)− qφ
∗
(·)|∞. The following result provides an error estimate of

the q-learning algorithm, the proof of which is similar to that of Theorem 4.4.

Theorem 4.7. Let Assumption 4.6 hold. Set αθ,n, αφ,n = A
nν+B for some ν ≤ 1, A > α

2κ and B > 0,

and let ε > 0. Then there exists C > 0 (independent of n, ε) such that with probability 1− ε,

|J∗(t, x)− Jθn(t, x)| ≤ ∆ +
C

ερθ/2
n−

νρθ
2 . (4.16)
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Consequently, the regret is:

n∑
k=1

|J∗(t, x)− Jθk(t, x)| . ∆n+
1

ερθ/2

 n1− νρθ2 if νρθ < 2,
lnn if νρθ = 2,
O(1) if νρθ > 2.

(4.17)

Our ultimate goal is to derive the regret bound of the learned policies πn(a | t, x) ∝ exp(qφn(t, x, a))
in terms of the original control problem (2.2) (without the entropy term in the reward functional).
To this end, given a policy π(·), denfine

J̊(t, x;π) := E

[∫ T

t

e−β(s−t)r(s,Xπ
s , a

π
s )ds+ e−β(T−t)h(Xπ

T )

∣∣∣∣Xπ
t = x

]
, (4.18)

where (aπs , t ≤ s ≤ T ) is sampled from π and E is with respect to both the original probability
measure P and the policy randomization. The following theorem gives the discrepancy between
J̊n(t, x) := J̊(t, x;πn) and J̊(t, x).

Theorem 4.8. Let the assumptions in Theorem 4.2 and Assumption 4.6 hold. Moreover, assume
that |qφ∗ |∞ < ∞. Set αφ,n = A

nν+B for some ν ≤ 1, A > α
2κ and B > 0, and let ε > 0. Then there

exists C > 0 (independent of n, ε) such that with probability 1− ε,

|J̊n(t, x)− J̊(t, x)| ≤ C
(

∆ +
γ

β
+

1

ερφ/2
n−

νρφ
4 (lnn)

1
2

)
+ |J∗(t, x)− J̊(t, x)|. (4.19)

Consequently, the regret is:

n∑
k=1

|J̊(t, x)− J̊k(t, x)| .
(

∆ +
γ

β
+ |J∗(t, x)− J̊(t, x)|

)
n+

1

ερφ/2

 n1−
νρφ
4 (lnn)

1
2 if νρφ < 4,

(lnn)
3
2 if νρφ = 4,

O(1) if νρφ > 4.
(4.20)

A proof of Theorem 4.8 is deferred to Section 4.3. Recall from (3.4) that under additional conditions

on the parameters, |J∗(t, x)− J̊(t, x)| . γ ln(1/γ). Thus, the regret is of order:

(
C(γ)∆ +

γ

β
+ γ ln(1/γ)

)
n+

C(γ)

ερφ/2

 n1−
νρφ
4 (lnn)

1
2 if νρφ < 4,

(lnn)
3
2 if νρφ = 4,

O(1) if νρφ > 4.

Note, however, that the dependence on γ of the constant C(γ) is hard to track. This is because it
is related to the constants in Assumption 4.6, and these constants depend on γ in rather obscure
ways. As explained in Section 3, it is possible to use an exploratory annealing γ = γn ↓ 0 (as
n → ∞) to improve the regret bound, however, at the cost of inefficient sampling of policies in
each iteration. The algorithmic implications of the above result is that, for a sufficiently good neural
network approximation (so that ∆ is sufficiently small) and a sufficiently small temperature parameter
γ, the regret of the learned policies applied to the original control problem in the long run is sufficiently
small.

4.3. Proofs. The proof of Theorem 4.2 requires a series of lemmas. First, similar to Lemma 3.6, we
establish a representation for Jn given by (3.1). Recall the definition of bn(t, x, a) from (4.3). Define

πn(a | s, x, z) ∝ exp

(
1

γ
(bn(s, x, a)σ−1(s, x)z + r(s, x, a))

)
, (4.21)
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and

Gns (z, Z) :=

∫
A

[
b(s,Xπ∗

s , a)σ−1(s,Xπ∗

s )Z + r(s,Xπ∗

s , a)

− γ log πn(a | s,Xπ∗

s , z)

]
πn(a | s,Xπ∗

s , z) da.

(4.22)

Lemma 4.9. Let Assumptions 3.1 and 4.1 hold. There exists (Ŵ , P̂), with Ŵ being P̂ -Brownian
motion, such that

Jn(t, x) = h(Xπ∗

T ) +

∫ T

t

[Gns (Zn−1
s , Zns )− βY ns ]ds−

∫ T

t

Zns dŴs, (4.23)

where Y ns := Jn(s,Xπ∗

s ) and Zns := (σ∇Jn)(s,Xπ∗

s ).

Proof. The proof is the same as Lemma 3.6-(i), noting that Jn satisfies the PDE (3.7) with πn(a | s, x) =
πn(a | s, x, (σ∇Jn−1)(s, x)). �

Recall the definition of Gs(z, Z) from (3.10). Next we bound |Gns (z′, Z ′)−Gs(z, Z)|.

Lemma 4.10. Let Assumptions 3.1 and 4.1 hold. Then for |z|, |Z|, |Z ′| ≤ C, there exists L > 0
(independent of γ) such that

|Gns (z′, Z ′)−Gs(z, Z)| ≤L
(

1 + e
L
γ +

1

γ
e
L
γ

)
|z′ − z|+ L|Z ′ − Z|

+ L

(
1 +

1

γ
e
L
γ

)
sup
a
|(b− bn)(s,Xπ∗

s , a)σ−1(s,Xπ∗

s )z′| a.s.
(4.24)

Proof. Note that |Gns (z′, Z ′) − Gs(z, Z)| ≤ |Gns (z′, Z ′) − Gs(z
′, Z ′)| + |Gs(z′, Z ′) − Gs(z, Z)|. By

Lemma 3.5,

|Gs(z′, Z ′)−Gs(z, Z)| ≤ L
(

1 + e
L
γ +

1

γ
e
L
γ

)
|z′ − z|+ L|Z ′ − Z| a.s. (4.25)

Now we estimate |Gns (z′, Z ′)−Gs(z′, Z ′)|. Recall the definitions of π(a | s, x, z) and πn(a | s, x, z) from
(3.9) and (4.21) respectively. It is easy to see that

|Gns (z′, Z ′)−Gs(z′, Z ′)| ≤ 2(bσC + r)E1 + E2, (4.26)

where

E1 := dTV

(
πn(· | s,Xπ∗

s , z′), π(· | s,Xπ∗

s , z′)
)
,

E2 := γ

∣∣∣∣∫
A

log πn(a | s,Xπ∗

s , z′)πn(a | s,Xπ∗

s , z′)− log π(a | s,Xπ∗

s , z′)π(a | s,Xπ∗

s , z′)da

∣∣∣∣ .
The same argument as in (3.14) yields

E1 ≤
1

γ
exp

(
2

γ
(bσC + r)

)
sup
a
|(b− bn)(s,Xπ∗

s , a)σ−1(s,Xπ∗

s )z′| a.s. (4.27)
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Moreover,

E2 ≤
∫
A

∣∣∣bn(s,Xπ∗

s , a)σ−1(s,Xπ∗

s )z′ − b(s,Xπ∗

s , a)σ−1(s,Xπ∗

s )z′
∣∣∣ πn(a | s,Xπ∗ , z′)da

+

∫
A
b(s,Xπ∗

s , a)σ−1(s,Xπ∗

s )z′
∣∣∣πn(a | s,Xπ∗ , z′)− π(a | s,Xπ∗ , z′)

∣∣∣ da
+

∫
A
|r(t, x, a)||πn(a | s,Xπ∗ , z′)− π(a | s,Xπ∗ , z′)|da

+ γ

∣∣∣∣∣∣log

∫A exp
(

1
γ (bn(s,Xπ∗

s , a)σ−1(s,Xπ∗

s )z′ + r(s,Xπ∗

s , a)))
)
da∫

A exp
(

1
γ (b(s,Xπ∗

s , a)σ−1(s,Xπ∗
s )z′ + r(s,Xπ∗

s , a)))
)
da

∣∣∣∣∣∣
≤ 2 sup

a
|(b− bn)(s,Xπ∗

s , a)σ−1(s,Xπ∗

s )z′|+ 2(bσC + r)E1

≤ 2

(
1 +

bσC + r

γ
exp

(
2

γ
(bσC + r)

))
sup
a
|(b− bn)(s,Xπ∗

s , a)σ−1(s,Xπ∗

s )z′| a.s.

(4.28)

By (4.26), (4.27) and (4.28), we get

|Gns (z′, Z ′)−Gs(z′, Z ′)|

≤ 2

(
1 +

2(bσC + r)

γ
exp

(
2

γ
(bσC + r)

))
sup
a
|(b− bn)(s,Xπ∗

s , a)σ−1(s,Xπ∗

s )z′| a.s.
(4.29)

Combining (4.25) and (4.29) yields (4.24). �

We also need the following variant of Lemma 3.4 on the BSDE.

Lemma 4.11. For i = 1, 2, let F it (y, z, Z) be a measurable function of (t, y, z, Z, ω) such that
(F it (y, z, Z), 0 ≤ t ≤ T ) is predictable for any fixed (y, z, Z) and (F it (0, 0, 0), 0 ≤ t ≤ T ) ∈ H0

0,
and there exist M1,M2,M3 > 0,

|F it (y′, z′, Z ′)− F it (y, z, Z)| ≤M1|y′ − y|+M2|z′ − z|+M3|Z ′ − Z| a.s.,

and that δ := supt,ω |F 1
t − F 2

t |∞ <∞. Further, let zi ∈ H0
0 and (Y i, Zi) be the unique solution to

Yt = ξ +

∫ T

t

F it (Ys, z
i
s, Zs)ds−

∫ T

t

ZsdWs, 0 ≤ t ≤ T a.s.

Fixing η ∈ (0, 1), we have for θ ≥M1 + (1 + η−1)(M2 +M3 + δ)2,

eθtE|Y 1
t − Y 2

t |2 + |Z1 − Z2|2Hθt ≤ η(|z1 − z2|2Hθt + δ).

Proof. It suffices to note that |F 1
t (y, z, Z)−F 2

t (y′, z′, Z ′)| ≤ δ+M1|y′− y|+M2|z′− z|+M3|Z ′−Z|
a.s., and the same argument as in [17, Lemma A.5] permits to conclude. �

Now we give the proof of Theorem 4.2.

Proof of Theorem 4.2. Let Fs(Y, z, Z) := Gs(z, Z) − βY and Fns (Y, z, Z) := Gns (z, Z) − βY . By

Lemma 4.9, we have Jn(t, x) = Y nt and J∗(t, x) = Y t,xt , where

Y ns = h(X
π∗γ
T ) +

∫ T

s

Fnu (Y nu , Z
n−1
u , Znu ) du−

∫ T

s

ZnudŴu,

Y t,xs = h(X
π∗γ
T ) +

∫ T

s

Fu(Y t,xu , Zt,xu , Zt,xu ) du−
∫ T

s

Zt,xu dŴu,
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with Zns = (σ∇Jn) (s,Xπ∗

s ) and Zt,xs = (σ∇J∗) (s,Xπ∗

s ). By Lemma 4.10 and the assumption that
|∇Jn| ≤M for all n, we get

|Fnu (Y nu , Z
n−1
u , Znu )− Fu(Y t,xu , Zt,xu , Zt,xu )|

≤ β|Y nu − Y t,xu |+ L

(
1 + e

L
γ +

1

γ
e
L
γ

)
|Zt,xu − Zn−1

u |+ L|Zt,xu − Znu |+ L

(
1 +

1

γ
e
L
γ

)
|q(·;πn−1)− qφn |∞.

Applying Lemma 4.11 withM1 = β, M2 = L
(

1 + e
L
γ + 1

γ e
L
γ

)
, M3 = L and δ = L

(
1 + 1

γ e
L
γ

)
|q(·;πn−1)−

qφn |∞, we have for θ ≥ β + (1 + η−1)L2
[
1 + e

L
γ + 1

γ e
L
γ + L

(
1 + 1

γ e
L
γ

)
|q(·;πn−1)− qφn |∞

]2
,

eθtÊ|Y t,xt − Y nt |2 + |Zt,x − Zn|2Ĥθt ≤ η
[
|Zt,x − Zn−1|2Ĥθt + L

(
1 +

1

γ
e
L
γ

)
|q(·;πn−1)− qφn |∞

]
.

Thus, |Zt,x − Zn|2
Ĥθt
≤ ηn|Zt,x − Z0|2

Ĥθt
+ L

(
1 + 1

γ e
L
γ

)∑n
k=1 η

n+1−k|q(·;πk)− qφk+1 |∞, and

|J∗γ (t, x)− Jnγ (t, x)|2 ≤ ηn
∫ T

t

eθ(T−t)|σ(s,X
π∗γ
s )|2|∇J∗(s,Xπ∗γ

s )−∇J0(s,X
π∗γ
s )|2ds

+ L

(
1 +

1

γ
e
L
γ

)
e−θt

n∑
k=1

ηn+1−k|q(·;πk)− qφk+1 |∞.

This yields the bound (4.4). �

We proceed to proving Theorem 4.4.

Proof of Theorem 4.4. By the argument of [2, Theorem 22], Assumption 4.3 (1)–(3) and the condition
on αφ,n imply

E|φn − φ∗|2 ≤ Cn−ν for some C > 0 (independent of n).

Thus, |φn − φ∗| ≤ Cε−
1
2n−

ν
2 with a probability of at least 1 − ε. Next by Assumption 4.3 (4), we

have:

|q(·;π∗)− qφn |∞ ≤ ∆ + Cε−
ρφ
2 n−

νρφ
2 . (4.30)

It is easy to deduce that dTV (πn, π∗) ≤ C(∆+ε−
ρφ
2 n−

νρφ
2 ), since πn(a | t, x) ∝ exp( 1

γ q
φn(t, x, a)) and

π∗(a | t, x) ∝ exp( 1
γ q(t, x, a;π∗)). By Assumption 4.3 (5), we get for ∆ sufficiently small,

|q(·;πn)− q(·;π∗)|∞ ≤ C(∆ + ε−
ρφ
2 n−

νρφ
2 ). (4.31)

Combining (4.30) and (4.31) gives |q(·;πn)− qφn+1 |∞ ≤ C(∆ + ε−
ρφ
2 n−

νρφ
2 ). Applying Theorem 4.2

and (4.5) yields the bound (4.9). �

Finally, we prove Theorem 4.8.

Proof of Theorem 4.8. Note that

|J̊n(t, x)− J̊(t, x)| = |J̊n(t, x)− J(t, x;πn) + J(t, x;πn)− J∗(t, x) + J∗(t, x)− J̊(t, x)|

≤ |J̊n(t, x)− J(t, x;πn)|+ |J(t, x;πn)− J∗(t, x)|+ |J∗(t, x)− J̊(t, x)|.
(4.32)

It follows from Theorem 4.4 that

|J(t, x;πn)− J∗(t, x)| ≤ C
(

∆ +
1

ερφ/2
n−

νρφ
4 (lnn)

1
2

)
. (4.33)
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Moreover, |J̊n(t, x)− J(t, x;πn)| ≤ γE
[∫ T
t
e−β(s−t) ∫

A | log πn(a | s,Xπn

s )|πn(a | s,Xπn

s )da

∣∣∣∣Xπn

t = x

]
.

Note that | log πn(a | t, x)| ≤ qφn(t, x, a)+ | log
∫
A exp(qφn(t, x, a))da|. By Assumption 4.6 (4) and that

|qφ∗ |∞ <∞, we conclude that | log πn(a | t, x)| is uniformly bounded. As a result,

|J̊n(t, x)− J(t, x;πn)| ≤ Cγ

β
for some C > 0. (4.34)

Combining (4.32), (4.33) and (4.34) yields (4.19). �

5. Conclusion

This paper studies convergence of various RL algorithms for controlled diffusions. We provide the
convergence rate and the regret of exploratory policy iteration, semi-q-learning, and q-learning. The
tools that we develop in this paper encompass stochastic control, partial differential equations and
probability theory (BSDEs in particular).

As continuous RL is still in the early innings and to our best knowledge this paper is the first
to study convergence and regret of q-learning, there are numerous open questions. First, one can
relax some technical assumptions, e.g. the uniform boundedness of ∇Jn in Theorem 4.2, and provide
general sufficient conditions on the model parameters to ensure Assumptions 4.3 and 4.6 (1)–(3),(5).
In particular, it is interesting to inquire if these assumptions hold in the important class of linear–
quadratic (LQ) controls. Second, we only exercise control (and hence exploration) on the drift, and
it is important and curious, as well as challenging, to consider control-dependent diffusion coeffi-
cients. Finally, it is intriguing to investigate whether the established convergence rates and regrets
are optimal. For that, considering exploratory annealing is a promising direction.
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